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Abstract 15 

Weather-related research often requires synthesizing vast amounts of data that need 16 

archival solutions that are both economical and viable during and past the lifetime of the project. 17 

Public cloud computing services (e.g., from Amazon, Microsoft, or Google) or private clouds 18 

managed by research institutions are providing object data storage systems potentially 19 

appropriate for long-term archives of such large geophysical data sets. We illustrate the use of a 20 

private cloud object store developed by the Center for High Performance Computing (CHPC) at 21 
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the University of Utah. Since early 2015, we have been archiving thousands of two-dimensional 22 

gridded fields (each one containing over 1.9 million values over the contiguous United States) 23 

from the High-Resolution Rapid Refresh (HRRR) data assimilation and forecast modeling 24 

system. The archive is being used for retrospective analyses of meteorological conditions during 25 

high-impact weather events, assessing the accuracy of the HRRR forecasts, and providing initial 26 

and boundary conditions for research simulations. The archive is accessible interactively and 27 

through automated download procedures for researchers at other institutions that can be tailored 28 

by the user to extract individual two-dimensional grids from within the highly compressed files. 29 

Characteristics of the CHPC object storage system are summarized relative to network file 30 

system storage or tape storage solutions. The CHPC storage system is proving to be a scalable, 31 

reliable, extensible, affordable, and usable archive solution for our research. 32 

 33 
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1. Introduction 36 

 Weather research and operational weather forecasting depends heavily on evaluating the 37 

output from high-resolution regional numerical weather prediction models. The Weather 38 

Research and Forecasting (WRF) model is the world's most widely-used regional numerical 39 

weather prediction model relied upon operationally for life-saving weather forecasts and for 40 

aviation, energy, fire prediction, surface transportation, and water resource management 41 

applications (Powers et al. 2017). The High-Resolution Rapid Refresh (HRRR) version of the 42 

WRF model, developed by the Earth Systems Research Lab (ESRL), is an hourly updating, 43 

cloud-resolving, convection-allowing model run operationally by the National Centers for 44 

Environmental Prediction’s Environmental Modeling Center (EMC) (Benjamin et al. 2016). 45 

Output from most U.S. operational weather models run by EMC are available on EMC servers 46 

for the current day and then archived by the National Centers for Environmental Information 47 

(NCEI). However, the voluminous HRRR model output available each hour for forecast 48 

durations from 0-18 h with a grid spacing of 3 km over the contiguous United States (1.9 million 49 

grid points) is not yet available from NCEI. To archive in a highly compressed format, a 50 

representative sample of the output generated by the operational HRRR model requires over 200 51 

TB of disk space per year.  52 

Researchers rely heavily on output from regional models such as HRRR and WRF to 53 

diagnose the interplay between complex atmospheric processes on spatial scales from 10
2
 – 10

6
 54 

m and temporal scales from 10
2
 – 10

7
 s (Benjamin et al. 2016; Powers et al. 2017). A common 55 

research strategy is to focus on case studies of specific weather events as a practical approach to 56 

manage the TBs of output generated by the models (e.g., Blaylock et al. 2017, Crosman and 57 

Horel 2017). With continued growth in computing capabilities, numerical simulations will 58 



continue to transition to finer spatial and temporal resolution over increasingly large regional 59 

domains. As these models grow, so does the storage space and monetary cost required to archive 60 

model output. Of course, large data storage needs are ubiquitous throughout the atmospheric 61 

sciences, for example, to archive satellite imagery (Moody et al. 2016) or multi-decadal 62 

numerical simulations of the climate system (Taylor et al. 2012). 63 

Molthan et al. (2015) highlight that cloud computing resources (computational services 64 

delivered over networks) are providing new capabilities for supporting numerical weather 65 

prediction and are a potential solution to archive large volumes of data (Armbrust et al. 2010; 66 

Sandholm and Lee 2014). To meet these needs, Sandholm and Lee (2014) described how these 67 

services need to be: scalable; fault-tolerant; reliable; high-performance; and easy to use, manage, 68 

monitor, and provision efficiently and economically. Public cloud services provided by 69 

corporations (e.g. Amazon, Google, or Microsoft) or research consortia (e.g. Open Science Data 70 

Cloud, https://www.opensciencedatacloud.org/) are increasingly viable options to meet those 71 

requirements, although understanding the extent to which they are economical can be difficult 72 

(Chou 2015; Amazon Web Services 2017a). Private cloud services are defined as being operated 73 

by an organization for which hardware, networking, storage, and other infrastructure are not 74 

directly shared with other organizations (Mell and Grance 2011). The Center for High 75 

Performance Computing (CHPC) at the University of Utah provides private cloud services 76 

through a data center located off campus.  77 

The objective of this paper is to illustrate the utility and cost effectiveness of a PB disk-78 

based object storage data system managed by the CHPC for archiving large data sets. The 79 

capabilities of object data storage systems for geoscience applications will be illustrated in terms 80 

of an archive of operational and experimental forecasts from the HRRR model in the contiguous 81 



United States and Alaska from early 2015 to the present. While we have relied extensively over 82 

the years on other CHPC storage media (such as a robotic tape archive system and over 100 TB 83 

of network file system disk storage), the object data storage system is meeting several of our 84 

interwoven needs that are less practical using other traditional data archival approaches: (1) 85 

efficient expandable storage for thousands of large data files; (2) data analysis using fast retrieval 86 

of user selectable byte-ranges within those data files; and (3) the ability to have the data publicly 87 

accessible to the atmospheric science research community.  88 

The remainder of the paper describes how the archive is built and how users can access 89 

the data (section 2), followed by applications for which data from the HRRR archive have been 90 

used (section 3), and concludes with a discussion of the growing need for large archives and 91 

some limitations that should be resolved in the future (section 4). 92 

 93 

2. Methods 94 

2.1 Pando Object Storage System 95 

 The CHPC has dramatically increased its network file system data storage capabilities 96 

over the past 10 years from ~400TB to ~14PB due to decreased hardware costs and development 97 

of cost-effective storage solutions (Center for High Performance Computing 2017). However, 98 

archival storage capacity primarily in terms of a robotic tape system has not increased as rapidly, 99 

leaving a large fraction of the data without backup. To help mitigate this shortcoming, CHPC 100 

developed a disk-based object storage solution referred to as Pando (named for a vast stand of 101 

aspen trees in Utah that is thought to be the largest and oldest single living organism). Currently 102 

at 1 PB in usable capacity, Pando was developed at lower cost than other archival options and 103 

has greater resiliency, accessibility, and expandability. Researchers lease dedicated amounts of 104 



archival space over a 5-year span to help recover some of the costs for Pando. They then manage 105 

their own space, which helps reduce CHPC’s administrative burden to manage the archive. 106 

The CHPC took into consideration that an improved archival system needed to scale to a 107 

much larger size than what might be affordable initially. Large network file systems or 108 

Redundant Array of Independent Disks (RAID) sets do not scale well as the number and size of 109 

drives increase, particularly since recovering and repairing after an error or disk corruption may 110 

require disks to be offline for many days. The CHPC selected Red Hat’s Ceph object-based open 111 

source storage system (Maltzahn et al. 2010) to address the shortcomings of both RAID and file 112 

systems based on published performance comparisons (e.g., Poat et al. 2015) and testing over 113 

several years. Low-level operations, such as block or file level I/O, are managed by a software 114 

layer that manipulates objects for the user or administrator such that expensive RAID controllers 115 

are not necessary and archived objects can be replicated or made redundant according to 116 

configurable parameters.   117 

Pando was formatted using the 6+3 erasure coding, i.e., all objects are broken into 9 118 

pieces—6 data pieces and 3 redundancy pieces necessary for data protection and reconstruction.  119 

The initial 1 PB Pando archive consists of 9 storage servers each with sixteen 8 TB drives that 120 

are coordinated by 3 monitor nodes that efficiently maintain the map of the objects in the system 121 

(Fig. 1). If the file system on a single drive becomes corrupt, then: (1) that drive is logically 122 

removed by the system administrator; (2) the administrator recreates the file system and logically 123 

adds it back in; and (3) the objects are redistributed within the new file system automatically by 124 

the Ceph software to maintain the configured level of redundancy. The 6+3 erasure coding 125 

ensures no data loss even if every disk fails on three servers. The Pando system has the capacity 126 

to contain 44 servers before additional network infrastructure must be purchased making it 127 



expandable to approximately 5PB with current drive capacities. To ensure that Pando is in 128 

production past disk warranty periods, Ceph can transparently migrate the data to new hardware 129 

when old hardware is retired. 130 

The Amazon Simple Storage Service (S3) has been implemented on Pando through a 131 

Reliable Autonomic Distributed Object Store (RADOS) Gateway node to focus on  132 

long-term storage needs separate from the other mounted file systems available to CHPC users 133 

(Nawaz et al. 2016). The RADOS Gateway node (Fig. 1) serves as an interface between client 134 

computers and objects managed by the RADOS software layer. Present usage suggests that 135 

additional RADOS Gateway nodes will be necessary in the future to avoid throughput 136 

bottlenecks (speeds of only 5 GB s
-1

 during high loads) that limit optimal utilization of the Pando 137 

system. Objects are most efficiently uploaded to Pando from the CHPC local file systems using 138 

rclone (Wood 2017), which is open source software commonly used to download or upload files 139 

between hard disk and cloud storage systems. 140 

2.2 HRRR Data Archive 141 

 Several implementations of the HRRR modeling system have been developed by ESRL 142 

researchers with staff at EMC maintaining its operational version for the contiguous United 143 

States (Benjamin et al. 2016). To support air quality research at the University of Utah (Horel et 144 

al. 2016; Blaylock et al. 2017), we started archiving operational HRRR analysis (forecast hour 0) 145 

output files beginning April 2015 on local network file system disks obtained from the NOAA 146 

Operational Model Archive and Distribution System (NOMADS). Other research projects led us 147 

to download selected meteorological fields from the operational HRRR 1-18 h forecast files 148 

beginning in summer 2017 and analysis and forecast fields from experimental versions of the 149 

HRRR for the contiguous United States and Alaska. The thousands of 2-dimensional 150 



meteorological fields available from the HRRR are stored as gridded binary-2 (GRIB2) files, a 151 

highly efficient binary format that relies on Joint Photographic Experts Group (JPEG) 2000 152 

image compression (Silver and Zender 2017).  153 

By early 2017, local file system storage for the HRRR products grew to over 20 TB with 154 

the expectation that by later in 2017, over 100 GB of model grids would be added per day. That 155 

storage approach was becoming unwieldy to manage across multiple file server partitions and 156 

not practical to facilitate access to the archive for an increasing number of atmospheric science 157 

researchers external to the University of Utah, who became aware of it through online searches 158 

for HRRR model output. After initial testing of the Pando system, all the locally-archived HRRR 159 

files were transferred to it and removed from the local file system.  160 

 Since EMC and ESRL provide efficient access for anyone interested in HRRR model 161 

output for the current and previous day (Bowman and Lees 2015), we prefer external users to not 162 

overwhelm our archival system by requesting what is already easily available from those 163 

sources. We execute download scripts after 00 UTC to retrieve files for the previous day to our 164 

local CHPC network file storage, a process that can take several hours to complete even with 165 

multithreading. The files are then copied to the Pando archive using the open source rclone 166 

utility. The s3cmd utility is used to change permissions for each file from private to public so 167 

they can be accessed by other researchers at the University of Utah and elsewhere.  168 

 The present implementation of Ceph on Pando limits the ability to view the contents or 169 

manipulate the data object files. Rather, each file has a unique URL that can be used to download 170 

it via HTTPS. While anyone can attempt to directly download such files from the archive, web 171 

pages have been developed for identifying which files are available to simplify interactive 172 

downloads (https://hrrr.chpc.utah.edu; Fig. 2). Users are encouraged to avoid excessive reliance 173 

https://hrrr.chpc.utah.edu/


on the interactive pages and create automated download procedures using wget or cURL with 174 

example code provided on the aforementioned web page.   175 

Since most users prefer to access a relatively small number of the meteorological fields 176 

contained within each of the large HRRR GRIB2 files, it is cumbersome to retrieve the entire file 177 

and then process it to extract the fields of interest. To facilitate access to specific 2-dimensional 178 

fields, we use the wgrib2 tool (Climate Prediction Center 2017) to create a metadata file for each 179 

GRIB2 file and provide that information on a local web server since there is no need to store 180 

them as objects in Pando. These index files contain for each field its abbreviated variable name, 181 

vertical level, beginning byte, time of the model run, and forecast hour. Hence, it is 182 

straightforward to derive the corresponding byte range for a variable and retrieve using cURL its 183 

2-dimensional field. Unfortunately, it is not currently possible to retrieve a byte range within a 184 

GRIB2 formatted file for a subsection of the two-dimensional grid (e.g., for a state or regional 185 

area of interest). This is a present limitation of object storage and GRIB2 file formats that may be 186 

solved through continued development of object storage systems or archiving the gridded data in 187 

a different file format. Hence, the smallest granule that can be retrieved from a GRIB2 HRRR 188 

file is a single field over that entire domain (~1 MB). Multiprocessing and multithreading 189 

techniques such as those available using Python’s multiprocessing module can be leveraged to 190 

spread the work across multiple cores and reduce download time and greatly increase the data 191 

processing speed when fields from multiple files are needed. We have developed Python multi-192 

processor procedures that rely on basic cURL commands to efficiently access the HRRR files 193 

from a single dedicated CHPC server. For example, computing the minimum, mean, and 194 

maximum wind speed from nearly 17,000 hourly analyses at the 1.9 million grid points in the 195 

operational HRRR model was done in less than 15 minutes using 30 processors. 196 



 The current HRRR archive directory tree for both the Pando and metadata archive is 197 

branched by model type (operational HRRR, experimental HRRR, and experimental HRRR 198 

Alaska), by file type (sfc files contain a selection of 2-dimensional fields while many more 2-199 

dimensional fields at fixed pressure levels in the vertical as well as other levels are available in 200 

the prs files), and by date (year, month, and day). 201 

HRRR/ 202 

 oper/ 203 

 sfc/ 204 

 YYYYMMDD/ 205 

 prs/ 206 

 YYYYMMDD/ 207 

 alaska/ 208 

 sfc/ 209 

 YYYYMMDD/ 210 

 prs/ 211 

 YYYYMMDD/ 212 

 exp/ 213 

 sfc/ 214 

 YYYYMMDD/ 215 

Each file within the daily directories follow the same naming convention used by NOMADS 216 

when the file is first downloaded (files from ESRL are renamed to match the NOMADS naming 217 

convention). The files are named by the model type, the initialization hour, variable field, and the 218 

forecast hour ([hrrr/hrrrAK/hrrrX].t[hour]z.wrf[sfc/prs]f[forecast].grib2). For example, the 219 

following request will download the full surface field file from the operational HRRR analysis 220 

for 14:00 UTC 5 April 2017:  221 

https://pando-rgw01.chpc.utah.edu/HRRR/oper/sfc/20170405/hrrr.t14z.wrfsfcf00.grib2. 222 

Metadata for the corresponding HRRR file can be found in the GRIB2 index file located here: 223 

https://api.mesowest.utah.edu/archive/HRRR/oper/sfc/20170405/hrrr.t14z.wrfsfcf00.grib2.idx. 224 

https://pando-rgw01.chpc.utah.edu/HRRR/oper/sfc/20170405/hrrr.t14z.wrfsfcf00.grib2
https://api.mesowest.utah.edu/archive/HRRR/oper/sfc/20170405/hrrr.t14z.wrfsfcf00.grib2.idx


The index file can be used to request specific variables within a byte range. If a user was only 225 

interested in 10 m gusts, then the index file indicates that the byte range for the gusts variable for 226 

that file is between 3478099 and 4879421. Using cURL, a user can download the gust variable 227 

from the larger file as follows: 228 

curl -o downloaded_file.grib2 --range 2757386-4110515 https://pando-229 

rgw01.chpc.utah.edu/HRRR/oper/sfc/20170405/hrrr.t14z.wrfsfcf00.grib2. 230 

 231 

3. Applications 232 

3.1 High-Impact Weather Events 233 

 While voluminous sets of graphics of analysis and forecasts fields from the HRRR model 234 

runs are generated routinely by ESRL, EMC, academic institutions, and commercial sources of 235 

weather information, those usually depict only conditions within the past few days and only 236 

show a small fraction of the information contained in the HRRR GRIB2 files. The HRRR Pando 237 

archive provides users access to all the fields contained in the HRRR grib2 files. These files can 238 

be used to create customized graphics of high impact weather events or other features of interest 239 

to the user. For example, the major New England snowstorm on 14 March 2017 is depicted by 240 

the HRRR mean sea level pressure analysis valid at 1700 UTC 14 March 2017 (Fig. 3). 241 

 Hourly changes in atmospheric conditions at specific locales can be examined by 242 

downloading the requisite grids each hour, which can be easily retrieved from the Pando archive 243 

using the procedures described above. Figure 4 illustrates the conditions analyzed by the HRRR 244 

centered on 2100 UTC 27 April 2017 at which time a wildfire near O’Donnell Texas traversed 245 

across the site of a West Texas Mesonet station (Schroeder et al. 2005) as evident by the 58
o
C 246 

observed 2-m air temperature at that time. The HRRR hourly analyses closely track observations 247 



(albeit not the temperature spike associated with the fire) as well as provide additional diagnostic 248 

variables, such as winds at 80 m above ground level and estimates of the boundary layer depth. 249 

 Since the primary purpose of the operational HRRR model is to provide short-term (0-18 250 

h) weather forecast guidance updated every hour to predict severe weather (Benjamin et al. 251 

2016), assessing the model’s ability to properly forecast such conditions is of high interest. For 252 

example, 30 tornadoes and hundreds of reports of hail and high winds were received on 4-5 April 253 

2017 from Missouri to Ohio extending southward to Alabama and Georgia (Storm Prediction 254 

Center 2017). Airline operations in Atlanta were severely affected on 5 April causing thousands 255 

of delayed or canceled flights. Figure 5 contrasts the simulated composite reflectivity and gust 256 

analyses from the HRRR model at 1400 UTC 5 April 2017 to the 16 h forecast from the HRRR 257 

run initialized 2200 UTC 4 April 2017. The model forecast at 16 h highlights many of the 258 

locations that later received heavy precipitation and strong winds.  259 

 260 

3.2 HRRR Model Composites 261 

 Statistics derived over long-time intervals from model output can provide useful 262 

information, such as availability of wind and solar energy resources (James et al. 2017) or 263 

identifying model performance characteristics (Katona et al. 2016, Ikeda et al. 2017). 264 

Preliminary basic statistics (minimum, mean, maximum, and percentiles) of meteorological 265 

variables (temperature, wind speed, snow cover, lightning, etc.) have been derived from the 2-266 

year archive of HRRR analysis grids. Multiprocessing techniques were used to speed up 267 

downloading the files from the archive and processing the grids for each of the 1.9 million grid 268 

points. Figure 6 shows the 95th percentile of the 10 m gusts analyzed by the operational HRRR 269 

at 2300 UTC during all days between 18 April 2015 and 30 March 2017. Such statistics are 270 



intended to be used to provide realistic bounds for observations of wind and other variables at 271 

over 25,000 locations in the United States that are available within the past 20 years as well as 272 

received continuously as part of the MesoWest and SynopticLabs projects (Horel et al. 2002; 273 

SynopticLabs 2017). Simultaneous calculations that require less memory (e.g., extreme and 274 

mean values) were completed in about 15 minutes for one variable over the entire contiguous 275 

United States. Brute-force approaches to calculate multiple percentile values (e.g., 1
st
, 5

th
, 10

th
, 276 

90
th

, 95
th

, and 99
th

) for each hour of the day necessary to generate Figure 6 required storing more 277 

values in memory and required roughly an hour for a single variable. Improved approaches using 278 

approximation techniques are possible to efficiently compute percentiles and other statistics and 279 

avoid excessive memory consumption on our compute nodes. 280 

 281 

3.3 Initializing WRF Simulations 282 

 The original impetus for our archive of the HRRR output was to obtain the best possible 283 

high-resolution WRF simulations over northern Utah to understand a poor air quality episode in 284 

the vicinity of Salt Lake City during 17-18 June 2015. Blaylock et al. (2017) ran a 1 km WRF 285 

simulation for northern Utah with initial and boundary conditions obtained from the HRRR 286 

hourly analyses beginning at 0000 UTC 14 June 2015 and continuing until 0700 UTC 19 June 287 

2015. 288 

While many researchers initialize high-resolution model simulations from operational and 289 

reanalysis modeling systems (e.g., Foster et al. 2017; Li et al. 2017), the HRRR provides 290 

significant advantages in terms of its 3 km grid spacing, hourly output files, and advanced data 291 

assimilation techniques. To the best of our knowledge, the study by Blaylock et al. (2017) was 292 

the first one to use HRRR analyses to initialize and provide the requisite lateral boundary 293 



conditions for WRF research simulations. While ESRL maintains an internal tape archive of 294 

HRRR model output, the HRRR archive on Pando is currently the only readily available resource 295 

for other researchers to initialize high-resolution WRF simulations with HRRR boundary 296 

conditions. While it is recommended to initialize WRF simulations with native or model-level 297 

HRRR files, we don’t archive the native level files at this time due to its large file sizes (> 600 298 

GB per file). However, WRF can be initialized with the HRRR pressure-level analysis files 299 

available on Pando. The steps required to initialize WRF with HRRR boundary conditions have 300 

been documented by Blaylock (2017).  301 

 302 

4. Discussion and Conclusions 303 

 The management and distribution of large geoscience data sets have received increasing 304 

attention, particularly given the explosion in public and private cloud-based resources. For 305 

example, an Amazon Web Service (AWS) S3 object store hosts the level 2 retrospective and 306 

real-time archive of Next Generation Weather Radar (NEXRAD) data (Amazon Web Services 307 

2017b). Our research group in the Department of Atmospheric Sciences uses Amazon AWS 308 

including its S3 object store for other applications that require uninterruptible computational 309 

resources and require a relatively fixed small amount of disk storage (SynopticLabs 2017). The 310 

complexity and volatility in the egress costs to upload or download data depending on the 311 

policies of each public cloud storage facility precluded our use of one of them for the HRRR 312 

archive. 313 

The private cloud CHPC Pando object storage archive has made it possible to efficiently 314 

archive, access, and analyze the HRRR model output. Pando is also being used by other 315 

atmospheric scientists, anthropologists, geneticists, and cancer researchers at the University of 316 



Utah. Our HRRR archive has many of the properties of an ideal data archive described by 317 

Kruger et al. (2006)—it is scalable, extensible, inexpensive, and usable. Having fixed leasing 318 

costs over a 5-year period allows us to plan as our archival needs grow. The private cloud Pando 319 

system provides faster access to our long-term data archive for our needs as well as provide 320 

reasonable access times for the several dozen researchers outside the University of Utah that 321 

have already discovered its utility in the short time that the archive has been available.  322 

 The major limitation of the present Pando object storage systems is that Ceph constrains 323 

how the objects can be managed and accessed. Red Hat now supports Ceph File System (Ceph 324 

FS, Red Hat 2017) as a Portable Operating System Interface (POSIX) compliant file system that 325 

is more flexible to handle the objects in the storage cluster. However, S3-type objects still must 326 

be downloaded to a local disk before the data contained within them can be processed. To avoid 327 

excessive downloading of data not of interest to a user, the highly efficient GRIB2 format of the 328 

HRRR model output allows selecting by byte range and returning only the fields of interest from 329 

the many two-dimensional fields contained within an object. Other file formats, such as 330 

Hierarchical Data Format Version 5 or Network Common Data Format, may eventually allow 331 

subsetting of S3 objects by variable, region, single grid point, all vertical levels at a point, etc., 332 

but that capability is not presently available. 333 

We expect that NCEI or other government or institutional repositories will begin to 334 

archive operational HRRR model output at some point. Although long-term archives of evolving 335 

experimental versions of models are seldom undertaken, having the ability as we do to compare 336 

output from experimental and operational versions of the same model makes it possible to assess 337 

model improvements more efficiently. Research agencies such as the National Science 338 

Foundation now require data management plans that describe what will happen to the data and 339 



metadata that led to the research results. While a small number of geoscience data repositories 340 

exist (e.g., the National Center for Atmospheric Research), those entities have strict standards for 341 

accepting large data sets that are often difficult to meet. At the present time, geoscience data 342 

journals require that data sets be in such data repositories prior to publication such as that by 343 

Jacques et al. (2016). Academic institutions will increasingly need to consider having facilities 344 

like the Pando archive to effectively meet those data stewardship requirements. However, it 345 

remains unclear whether those institutions are willing to subsidize the cost of maintaining large 346 

archives that are necessary to store results once research projects have been completed and funds 347 

are no longer available from the granting agencies. 348 
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 452 

Fig. 1. Present architecture of the Pando archive system.  453 



 454 

Fig. 2. Web interface to interactively access HRRR model output at http://hrrr.chpc.utah.edu. 455 



 456 

Fig. 3. Mean sea level pressure (hPa) from HRRR analysis at 1700 UTC 14 March 2017 during a 457 

high impact New England snowstorm.  458 



 459 

Fig. 4. (Left) HRRR simulated radar reflectivity (dBZ) at 2100 UTC 27 April 2017 at the time of 460 

a wildfire near O’Donnell, Texas (white circle). (Right) HRRR analysis of temperature (
o
C), dew 461 

point temperature (
o
C), 80 m wind speed (m s

-1
), 10 m gust (m s

-1
), 10 m maximum wind speed 462 

(m s
-1

), 10 m wind speed and direction (half and full barbs denote 2.5 and 5 m s
-1

, respectively 463 

and direction from which the wind blows denoted by the shaft), boundary layer height (m), and 464 

level of adiabatic condensation (m) between 0900 UTC 27 April 2017 and 900 UTC 28 April 465 

2017 near O’Donnell, Texas (white circle on the left). Observed temperature, dew point 466 

temperature, and wind speed from the O’Donnell West Texas mesonet site are shown by dashed 467 

black lines in the upper two panels. 468 



 469 

Fig. 5. HRRR analyses (top panels) and HRRR 16 h forecasts (bottom panels) of mean sea level 470 

pressure (contours at intervals of 4 hPa) valid 1400 UTC 5 April 2017 with simulated composite 471 

radar reflectivity (left panels in dBZ) and 10 m gusts (right panels in m s
-1

). 472 



 473 

Fig. 6. 95
th

 percentile 10 m gusts (m s
-1

) from HRRR analyses at 2300 UTC for all days between 474 

18 April 2015 and 30 March 2017. 475 
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